Format

Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2005 Jun 20;90(6):663-74.

Production of recombinant proteins by vaccinia virus in a microcarrier based mammalian cell perfusion bioreactor.

Author information

1
Biotechnology Unit, NIDDK, National Institutes of Health, DHHS, Bldg. 14A Rm. 173, MSC 5522, 9000 Rockville Pike, Bethesda, Maryland, USA.

Abstract

The HeLa cell-vaccinia virus expression system was evaluated for the production of recombinant proteins (enhanced green fluorescent protein (EGFP) and HIV envelope coat protein, gp120) using microcarriers in 1.5 L perfused bioreactor cultures. Perfusion was achieved by use of an alternating tangential flow device (ATF), increasing the length of the exponential phase by 50 h compared to batch culture and increasing the maximum cell density from 1.5x10(6) to 4.4x10(6) cell/mL. A seed train expansion method using cells harvested from microcarrier culture and reseeding onto fresh carriers was developed. EGFP was first used as a model protein to study process parameters affecting protein yield, specifically dissolved oxygen (DO) and temperature during the production phase. The highest level of EGFP, 12+/-1.5 microg/10(6) infected cells, was obtained at 50% DO and 31 degrees C. These setpoints were then used to produce glycoprotein, gp120, which was purified and deglycosylated, revealing a significant amount of N-linked glycosylation. Also, biological activity was assayed, resulting in an ID50 of 3.1 microg/mL, which is comparable to previous reports.

PMID:
15858791
DOI:
10.1002/bit.20423
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center