Send to

Choose Destination
Curr Biol. 2005 Apr 26;15(8):771-7.

The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation.

Author information

Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, 92093, USA.


During chromosome segregation, kinetochores form dynamic connections with spindle microtubules. In vertebrates, these attachments require the activities of a number of outer kinetochore proteins, including CENP-F [1, 2] and the widely conserved microtubule-associated protein CLASP [3]. Here, we investigate the functional relationship between HCP-1/2, two redundant CENP-F-like proteins, and CLASP(CLS-2) in Caenorhabditis elegans. HCP-1/2 and CLASP(CLS-2) localize transiently to mitotic C. elegans kinetochores with nearly identical kinetic profiles, and biochemical purifications demonstrate that they also associate physically. In embryos depleted of HCP-1/2, CLASP(CLS-2) no longer localizes to chromosomes, whereas CLASP(CLS-2) depletion does not prevent HCP-1/2 targeting. Consistent with the localization dependency and biochemical association, depletion of HCP-1/2 or CLASP(CLS-2) resulted in virtually identical defects in mitotic chromosome segregation characterized by a failure of sister-chromatid biorientation. This phenotype could be partially suppressed by disrupting the astral forces that pull spindle poles apart in the 1 cell embryo, indicating that CLASP(CLS-2) is required for biorientation when chromosome-spindle attachments are subjected to poleward force. Our results establish that the key role of HCP-1/2 is to target CLASP(CLS-2) to kinetochores, and they support the recently proposed model that CLASP functions to promote the polymerization of kinetochore bound microtubules [4].

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center