Format

Send to

Choose Destination
Nutrition. 2005 May;21(5):609-14.

Sodium and calcium intakes and bone mass in rats revisited.

Author information

1
Institute for Medical Research and Occupational Health, Zagreb, Croatia. msaric@imi.hr

Abstract

OBJECTIVE:

High sodium intake accompanied by insufficient dietary calcium may have detrimental effects on bone mass. Our study evaluated the effects of increased sodium and decreased calcium intakes on bone mineral density (BMD) and bone mineral content (BMC) in rats.

METHODS:

Four-month-old female Wistar rats were given deionized water or 1.8% solution of sodium chloride in deionized water and fed normal (1.2%) or marginal (0.33%) calcium in the diet for 2 mo. At the end of the experiment, BMD and BMC of the whole body and urinary sodium and calcium excretion were evaluated. All rats were killed and right femurs were removed to assess dry and ash weights. Two-way analysis of variance was used to evaluate effect of salt intake and effect of dietary calcium on these parameters.

RESULTS:

Salt-loaded animals had greater water consumption during the entire 2-mo period and significantly lower body weight from week 5 of the experiment. High salt intake increased urine volume and urinary excretion of sodium and calcium. Urinary calcium was about five times higher in salt-loaded animals than in rats on deionized water irrespective of dietary calcium content. Calcium in diet itself had no significant effect on these parameters. High salt intake slightly, but not significantly, decreased BMD, BMC, and femur weights. Lower calcium in diet significantly decreased BMD, and its effect on femur ash weight almost reached a level of significance.

CONCLUSION:

We confirmed the benefit of adequate calcium intake to BMD. Under our experimental condition, high salt intake in rats for 2 mo had no statistically significant effect on femur weights, BMD, or BMC even with marginal calcium in the diet.

PMID:
15850968
DOI:
10.1016/j.nut.2004.10.009
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center