Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2005 Jul;19(9):1134-6. Epub 2005 Apr 21.

MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration.

Author information

Neuropharmacology Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.


The importance of cyclooxygenase-2 (COX-2) in mediating Parkinson's disease (PD) was suggested in reports, indicating that COX-2 selective inhibitors or genetic knockout reduce 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic (DA) neurotoxicity in a mouse model of PD. However, cell types and mechanisms underlying the activation of COX-2 have not been clearly elucidated in these animal studies. Using primary neuron-glia cultures, we aimed to determine 1) whether microglia participate in 1-methyl-4-phenylpryridinium (MPP)-induced COX-2 activation and 2) whether the activation of COX-2 contributes to subsequent neurotoxicity. MPP, in a concentration-dependent manner, increased prostaglandin E2 (PGE2) production in mixed neuron-microglia cultures but not in enriched neuron, microglia, or astroglia cultures nor in mixed neuron-astroglia cultures. MPP-induced PGE2 increase was completely abolished by treatment with DuP697, a COX-2 selective inhibitor. DuP697 also significantly reduced MPP-induced DA neurotoxicity as determined by DA uptake assay. Immunocytochemistry and confocal microscopy studies showed enhanced COX-2 expression in both microglia and neurons after MPP treatment. However, neuronal increase in COX-2 expression was not totally dependent on the production of PGE2 from microglia, since microglia deficient in COX-2 only attenuated, but did not completely block, MPP-increased PGE2 production in mixed neuron-microglia cultures, suggesting that part of PGE2 production was originated from neurons. Together, these results indicate that MPP-induced COX-2 expression and subsequent PGE2 production depend on interactions between neurons and microglia. Microgliosis may also be responsible for the COX-2 activation in neurons, leading to the enhanced DA neurotoxicity, which, in turn, reinforces microgliosis. Thus inhibition of microgliosis and COX-2 activity may stop this vicious circle and be valuable strategies in PD therapy.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center