Send to

Choose Destination
J Org Chem. 2005 Apr 29;70(9):3667-73.

Novel behavior of O-methylated beta-cyclodextrins in inclusion of meso-tetraarylporphyrins.

Author information

Department of Molecular Science and Technology, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.


[structure: see text] The mechanism for formation of extremely stable 1:2 inclusion complexes of water-soluble meso-tetraarylporphyrins with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMe-beta-CD) in aqueous solutions has been studied by means of NMR spectroscopy and isothermal titration calorimetry. To simplify the system, 5,10,15-tris(3,5-dicarboxylatophenyl)-20-phenylporphyrin (1) was used as a guest porphyrin, because 1 forms only a 1:1 inclusion complex with cyclodextrin (CD). As host compounds, native beta-CD and the O-methylated-beta-CDs such as heptakis(2,3-di-O-methyl)- (2,3-DMe-beta-CD), heptakis(2,6-di-O-methyl)- (2,6-DMe-beta-CD), and TMe-beta-CDs were used. The thermodynamic parameters for complexation such as binding constants (K) and enthalpy (DeltaH degrees ) and entoropy changes (DeltaS degrees ) were determined by means of isothermal titration calorimetry. The K value for complexation of 1 with CD increases in the order beta-CD (K = (1.2 +/- 0.1) x 10(3) M(-)(1)) < 2,6-DMe-beta-CD ((1.2 +/- 0.1) x 10(4) M(-)(1)) << TMe-beta-CD ((6.9 +/- 0.4) x 10(6) M(-)(1)) < 2,3-DMe-beta-CD ((8.5 +/- 0.5) x 10(6) M(-)(1)), indicating participation of the secondary OCH(3) groups in extremely strong complexation of 1 with CD. Complex formation of 1 with beta-CD and 2,6-DMe-beta-CD is an enthalpically and entropically favorable process, while that with TMe-beta-CD and 2,3-DMe-beta-CD is an enthalpically much more favorable but an entropically less favorable process. The thermodynamic parameters suggest that inclusion of 1 into the cavities of TMe-beta-CD and 2,3-DMe-beta-CD is promoted by van der Waals interactions, which are stronger than those in the cases of beta-CD and 2,6-DMe-beta-CD. (13)C NMR spectra show that the conformations of both TMe-beta-CD and 2,3-DMe-beta-CD are altered upon inclusion of 1, while those of beta-CD and 2,6-DMe-beta-CD are mostly retained. On the basis of these results, it can be concluded that induced-fit type complexation of 1 with TMe-beta-CD and 2,3-DMe-beta-CD causes extremely strong binding of the host to the guest.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center