Send to

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2005 Apr 29;70(9):3618-32.

Total syntheses of Yingzhaosu A and of its C(14)-epimer including the first evaluation of their antimalarial and cytotoxic activities.

Author information

Department of Organic Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel.


[reaction: see text] The molecular structure of the naturally occurring antimalarial agent yingzhaosu A (1) is characterized by a 2,3-dioxabicyclo[3.3.1]nonane system (3a), an allylic alcohol, a homoallylic alcohol, and five stereogenic centers. Herein we report on the total synthesis of yingzhaosu A (1) in eight steps and 7.3% overall yield starting from (S)-limonene (12). To maximize efficacy, the bridged bicyclic endoperoxide molecular core was constructed by a multicomponent free-radical domino reaction in which five bonds are formed in a single operation. In addition, reaction protocols that are compatible with the sensitivity of the peroxide function to strong basic and nucleophilic reagents as well as to reducing agents were employed. An intriguing step involved the selective hydrogenation of a carbon-carbon double bond in the presence of a peroxide and an aldehyde function to give aldehyde peroxide 7. The two major synthons (aldehydoperoxide 7 and its complementary five-carbon atom unit 35) were linked through a Mukaiyama aldol reaction followed by in situ dehydration under mild buffered basic conditions. The carbonyl group in the resulting peroxidic enone 39 was stereoselectively reduced with either R-CBS catalyst (42b) to give, after in situ desilylation, yingzhaosu A (1) or with S-CBS catalyst (42a) its C(14)-epimer 40. The first quantitative in vitro and in vivo data for the antimalarial activity of yingzhaosu A (1) and its C(14)-epimer 40 are reported. The C(14)-epiyingzhaosu A (40) exhibits potent cytotoxic activity against the KB nasal-pharyngeal cancer cell line in vitro.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center