Format

Send to

Choose Destination
Neuroscience. 1992;48(1):151-7.

Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6J and epileptic DBA/2J mouse brain cortices.

Author information

1
Department of Neurochemistry, University of Li├Ęge, Belgium.

Abstract

Brain maturation and GABA metabolism are known to play a key role in epileptogenesis. The metabolism of the polyamines (putrescine, spermidine and spermine) is closely linked to the process of brain maturation. Putrescine has been shown to be catabolized to GABA in brain tissue and astrocytes. In order to better understand the importance of glial putrescine transport and metabolism, a model of age-dependent epilepsy was used to study the kinetic properties of [14C]putrescine uptake into cultured astrocytes from normal C57/BL and audiogenic DBA/2 newborn mice, and the subsequent GABA formation. (1) Putrescine uptake exhibited non-Michaelian allosteric kinetics with positive co-operativity (Hill factor = 2), suggesting a physiological importance of putrescine uptake by astrocytes. (2) The Vmax of putrescine uptake was significantly higher in C57/BL astrocytes than in DBA/2J, but the uptake affinity for putrescine was higher in DBA/2J than in C57/BL. (3) Higher K+ concentrations (18 mM) had little effect on putrescine uptake in either strain. (4) Ten-micromolar N-acetylputrescine, the first putrescine metabolite, stimulated putrescine uptake into astrocytes of both strains, but to a different degree: +46% in C57/BL and + 102% in DBA/2J. (5) The specific radioactivity of the GABA formed from labelled putrescine was four times higher in astrocytes from DBA/2J than from C57/BL mice. (6) The molar ratio of glutamate/GABA in the cerebral cortex of the DBA/2J mice was significantly higher during the period of audiogenic seizure susceptibility than in age-matched C57/BL mice. Our results show characteristics of putrescine uptake into astrocytes; we demonstrated distinct kinetic properties between normal and epileptic strains of mice.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
1584419
DOI:
10.1016/0306-4522(92)90345-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center