Send to

Choose Destination
J Cardiovasc Pharmacol. 2004 Nov;44 Suppl 1:S293-300.

Endothelial cell-specific over-expression of endothelin-1 leads to more severe cerebral damage following transient middle cerebral artery occlusion.

Author information

Institute of Molecular Biology, The University of Hong Kong, Hong Kong SAR, China.


Previously, we have demonstrated that mRNA expression of endothelin-1 (ET-1), a potent vasoconstrictor, is induced in astrocytes and endothelial cells after ischemic conditions, suggesting that both of these cells synthesize ET-1 under this stress condition. Furthermore, ET-1 protected primary cultured astrocytes from ischemic stress. In order to further investigate the role of endothelial ET-1 in cerebral ischemic injury, transgenic mouse lines (TET) with a transgene that included ET cDNA with SV40 polyA under tyrosine kinase with immunoglobulin and epidermal growth factor homology domain (Tie-1) promoter were used. TET mouse lines were further characterized for ET-1 over-expression in the brain. The reverse transcription-polymerase chain reaction (RT-PCR) analysis using the primers specific for transgene ET-1 showed that transgene ET-1 is only expressed in the brain from TET mice. Total expression of ET- 1 mRNA was also increased in the transgenic brain compared with the non-transgenic brain by semi-quantitative RT-PCR. In situ hybridization and immunocytochemical analyses showed that the increased ET-1 mRNA and peptide expressions were detected in endothelial cells of cerebral vessels of TET mice. Under normal conditions, the TET mice that have a slightly increased blood pressure compared with that of non-transgenic mice showed no gross morphological abnormalities in the brain. However, after transient middle cerebral artery occlusion, TET mice showed a more severe neurological deficit, and larger infarct size and volume, suggesting that over-expressing ET-1 in endothelial cells is deleterious to neuronal survival under ischemic conditions. Our present TET model will serve as an ideal model for studying the role of endothelial ET- 1 in the pathogenesis of ischemic stroke.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center