Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Mol Brain Res. 2005 Apr 4;134(2):205-14.

NOS isoenzyme content in brain nuclei as related to food intake in experimental cancer cachexia.

Author information

Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Department of Surgery, Sahlgrenska University Hospital, SE 413 45 Göteborg, Sweden.


Evidence implies that nitric oxide (NO) in the central nervous systems mediates anorexia in tumor-bearing hosts. We have therefore evaluated, by immunohistochemical image analyses, net alterations of nitric oxide synthases (nNOS, eNOS, iNOS) in brain nuclei [paraventricular hypothalamic nucleus (PVN), medial habenular nucleus (MHB), lateral habenular nucleus (LHB), paraventricular thalamic nucleus (PV), lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS)] of tumor-bearing mice (TB) with prostanoid-related anorexia. Pair-fed (PF) and freely fed (FF) non-tumor-bearing mice were used as controls. c-fos was analyzed as indicator of neuronal activation. nNOS was significantly increased in VMH and PVN from TB mice, while eNOS was significantly increased in LHB and LHA. iNOS was significantly increased in LHA and PVN nuclei, but decreased in MHB, LHB and VMH from tumor-bearers. However, several of these alterations were similarly observed in brain nuclei from pair-fed controls. Provision of unspecific NOS-antagonists to TB mice increased nNOS, eNOS and iNOS in several brain nuclei (PVN, LHA, VMH), but left tumor-induced anorexia unchanged. c-fos was significantly increased in all brain nuclei in PF mice except for NTS, LHA and PVN compared to controls, while tumor-bearing mice had increased c-fos in LHA and PVN only compared to controls. Our results demonstrate a complex picture of NOS expression in brain areas of relevance for appetite in tumor-bearing hosts, where most changes seemed to be secondary to stress during negative energy balance. By contrast, NOS content in PVN and LHA nuclei remains candidate behind anorexia in tumor disease. However, nitric oxide does not seem to be a primary mediator behind tumor-induced anorexia. NO may rather secondarily support energy intake in conditions with negative energy balance.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center