Format

Send to

Choose Destination
J Comput Neurosci. 2005 Jun;18(3):287-95.

Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs.

Author information

1
Department of Biomedical Engineering, Center for BioDynamics, Center for Memory and Brain, Boston University, Boston, MA 02215, USA. tnetoff@bu.edu

Abstract

Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.

PMID:
15830165
DOI:
10.1007/s10827-005-0336-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center