Format

Send to

Choose Destination
Blood. 2005 Aug 1;106(3):852-9. Epub 2005 Apr 7.

A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation.

Author information

1
Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul, 120-750, Korea.

Abstract

Signaling by receptor activator of NF-kappaB (nuclear factor-kappaB) ligand (RANKL) is essential for differentiation of bone marrow monocyte-macrophage lineage (BMM) cells into osteoclasts. Here, we show RANKL stimulation of BMM cells transiently increased the intracellular level of reactive oxygen species (ROS) through a signaling cascade involving TNF (tumor necrosis factor) receptor-associated factor (TRAF) 6, Rac1, and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) 1. A deficiency in TRAF6 or expression of a dominant-interfering mutant of TRAF6 blocks RANKL-mediated ROS production. Application of N-acetylcysteine (NAC) or blocking the activity of Nox, a protein leading to the formation of ROS, with diphenylene iodonium (DPI) inhibits the responses of BMM cells to RANKL, including ROS production, activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK), and osteoclast differentiation. Moreover, both RANKL-mediated ROS production and osteoclast differentiation were completely blocked in precursors depleted of Nox1 activity by RNA interference or by expressing a dominant-negative mutant of Rac1. Together, these results indicate that ROSs act as an intracellular signal mediator for osteoclast differentiation.

PMID:
15817678
DOI:
10.1182/blood-2004-09-3662
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center