Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Endocrinol. 2005 Aug;19(8):2112-31. Epub 2005 Apr 7.

Silencing of Fshr occurs through a conserved, hypersensitive site in the first intron.

Author information

1
Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.

Abstract

Expression of the FSH receptor (Fshr) is restricted to testicular Sertoli cells and ovarian granulosa cells, thereby limiting the direct targets of FSH action to these somatic cells of the gonads. Earlier studies indicate that transcription of Fshr in the gonads requires elements outside the gene's immediate 5' flanking sequence. To help uncover candidate regulatory sequences, comparative genomics and deoxyribonuclease I hypersensitivity mapping were employed. A total of 156 evolutionarily conserved sequences were found, and partial deoxyribonuclease I hypersensitivity mapping across 45 kb of 5' flanking sequence and the first intron identified four hypersensitive sites, DHS1-4. Notably, DHS1 and DHS2 localized to conserved sites in the promoter region and exon 1 and correlated with the active state of the gene. DHS3 also corresponded to a conserved site (site 7) but was more pronounced in nonexpressing myoid cells, suggesting a role in gene silencing. Transient transfection analysis of DHS3 confirmed its role in gene silencing, a function that was promoter, cell type, and position dependent. Protein-DNA binding studies on DHS3 revealed that octamer transcription factor 1 (OCT-1) and GATA-4 bound site 7, in vitro, and transient transfection analysis showed that their binding sites were required for silencing activity. Furthermore, chromatin immunoprecipitation revealed that OCT-1 bound to site 7 in the endogenous gene, but only in myoid cells. In contrast, GATA-1 bound site 7 predominantly in Sertoli cells, suggesting that it attenuates silencer activity. The findings reveal that OCT-1 binds within DHS3 to silence Fshr transcription and implicate members of the GATA family in the modulation of this activity.

PMID:
15817654
PMCID:
PMC1547732
DOI:
10.1210/me.2004-0244
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center