Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jun 3;280(22):21099-106. Epub 2005 Apr 6.

Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities.

Author information

Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.


Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center