Format

Send to

Choose Destination
Biochemistry. 1992 May 12;31(18):4515-26.

Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae.

Author information

1
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.

Abstract

Oligosaccharides released from the lipooligosaccharides (LOS) of Haemophilus influenzae nontypable strain 2019 by mild acid hydrolysis were fractionated by size exclusion chromatography and analyzed by liquid secondary ion mass spectrometry. The major component of the heterogeneous mixture was found to be a hexasaccharide of Mr 1366, which lost two phosphoethanolamine groups upon treatment with 48% aqueous HF. The dephosphorylated hexasaccharide was purified and shown by tandem mass spectrometry, composition analysis, methylation analysis, and two-dimensional nuclear magnetic resonance studies to be Gal beta 1----4Glc beta 1----(Hep alpha 1----2Hep alpha 1----3) 4Hep alpha 1----5anhydro-KDO, where Hep is L-glycero-D-manno-heptose and KDO is 3-deoxy-D-manno-octulosonic acid. An analogous structure containing authentic KDO was generated from LOS that had been HF-treated prior to acetic acid hydrolysis, suggesting that the reducing terminal anhydro-KDO moiety is produced as an artifact of the hydrolysis procedure by beta-elimination of a phosphate substituent from C-4 of KDO. Mass spectral analyses of O-deacylated LOS and free lipid A confirmed that, in addition to the two phosphoethanolamines on the oligosaccharide and two phosphates on the lipid A, another phosphate group exists on the KDO. This KDO does not appear to be further substituted with additional KDO residues in intact H. influenzae 2019 LOS. The terminal disaccharide epitope, Gal beta 1----4Glc beta 1----, of the hexasaccharide is also present on lactosylceramide, a precursor to human blood group antigens. It is postulated that the presence of this structure on H. influenzae LOS may represent a form of host mimicry by the pathogen.

PMID:
1581306
DOI:
10.1021/bi00133a019
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center