Format

Send to

Choose Destination
Environ Health Perspect. 2005 Apr;113(4):431-9.

Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells.

Author information

1
Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA.

Abstract

Xenoestrogens (XEs) are widespread in our environment and are known to have deleterious effects in animal (and perhaps human) populations. Acting as inappropriate estrogens, XEs are thought to interfere with endogenous estrogens such as estradiol (E2) to disrupt normal estrogenic signaling. We investigated the effects of E2 versus several XEs representing organochlorine pesticides (dieldrin, endosulfan, o',p'-dichlorodiphenylethylene), plastics manufacturing by-products/detergents (nonylphenol, bisphenol A), a phytoestrogen (coumestrol), and a synthetic estrogen (diethylstilbestrol) on the pituitary tumor cell subline GH3/B6/F10, previously selected for expression of high levels of membrane estrogen receptor-alpha. Picomolar to nanomolar concentrations of both E2 and XEs caused intracellular Ca2+ changes within 30 sec of administration. Each XE produced a unique temporal pattern of Ca2+ elevation. Removing Ca2+ from the extracellular solution abolished both spontaneous and XE-induced intracellular Ca2+ changes, as did 10 microM nifedipine. This suggests that XEs mediate their actions via voltage-dependent L-type Ca2+ channels in the plasma membrane. None of the Ca2+ fluxes came from intracellular Ca2+ stores. E2 and each XE also caused unique time- and concentration-dependent patterns of prolactin (PRL) secretion that were largely complete within 3 min of administration. PRL secretion was also blocked by nifedipine, demonstrating a correlation between Ca2+ influx and PRL secretion. These data indicate that at very low concentrations, XEs mediate membrane-initiated intracellular CCa2+ increases resulting in PRL secretion via a mechanism similar to that for E2, but with distinct patterns and potencies that could explain their abilities to disrupt endocrine functions.

PMID:
15811834
PMCID:
PMC1278483
DOI:
10.1289/ehp.7505
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center