Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Bull. 2005 Apr 15;65(3):235-40. Epub 2004 Dec 18.

D-amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors.

Author information

Section of Behavioral Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299 I-00161 Roma, Italy.


Estrogenic endocrine disruptors are hormonally active compounds that can bind to estradiol receptors. Central dopamine pathways have been reported to be affected by early developmental exposure to estrogenic endocrine disruptors. In the present study, pregnant female CD-1 mice were allowed to drink spontaneously either oil or environmentally relevant low doses of two estrogenic compounds, methoxychlor (20 microg/kg) or bisphenol-A (10 microg/kg) during gestation days 11-18. Their adult offspring were assessed for conditioned place preference produced by D-amphetamine (0, 1 or 2 mg/kg). Interestingly, prenatal treatment effects were sex-dependent and no changes in conditioned place preference emerged for the male offspring. Conversely, a clear-cut profile of D-amphetamine-induced conditioned place preference was only shown by oil-exposed females, whereas exposure to bisphenol-A or methoxychlor resulted in little or no place conditioning. Locomotor effects of acute d-amphetamine were not affected by prenatal exposure to bisphenol-A or methoxychlor. As a whole, prenatal exposure to estrogenic endocrine disruptors affected some steps in the organization of the brain dopaminergic systems in the female offspring, thus leading to long-term alterations in neurobehavioral function. These data confirm that exposure to weak environmental estrogens in the period of brain sexual differentiation can influence adult behavior.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center