Format

Send to

Choose Destination
Life Sci. 2005 Apr 29;76(24):2817-25.

Stretch-induced cell proliferation is mediated by FAK-MAPK pathway.

Author information

1
Research Center of Stem Cells Biology and Tissue Engineering, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guang Zhou 510080, China. Juguangw@hotmail.com

Abstract

Previously we reported that a uni-axial cyclic stretch treatment of rat 3Y1 fibroblasts induced focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation (Wang et al., 2001) [Wang, J.G., Miyazu, M., Matsushita, E., Sokabe, M., Naruse, K., 2001. Uni-axial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem. Biophys. Res. Comm. 288, 356-361]. In the present study, we investigated whether stretch-induced MAPK activation leads to proliferation of fibroblasts. 3Y1 fibroblasts were subjected to a uni-axial cyclic stretch treatment (1 Hz, 120% in length) and the bromodeoxyuridine (BrdU) incorporation was measured to access cell proliferation. BrdU incorporation increased in a time-dependent manner and became significant within 6 hours. To investigate the involvement of FAK, we transiently expressed FAK mutants that lacked tyrosine phosphorylation site (s) (F397Y, F925Y, F397/925Y). Transient expression of wild-type FAK or mock vector did not inhibit the stretch-induced BrdU incorporation, however, the FAK mutants significantly blocked BrdU incorporation. Treatment of the cells with MAPK inhibitors, PD98059 or SB203580, blocked extracellular signal-regulated kinase (ERK) phosphorylation and p38 MAPK phosphorylation, respectively, and also blocked stretch-induced BrdU incorporation. These results suggest that the stretch-induced FAK activation followed by MAPK activation plays an important role in the stretch-induced proliferation of 3Y1 fibroblasts.

PMID:
15808882
DOI:
10.1016/j.lfs.2004.10.050
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center