Send to

Choose Destination
Free Radic Biol Med. 2005 May 1;38(9):1180-7.

Trans lipid formation induced by thiols in human monocytic leukemia cells.

Author information

ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, I-40129 Bologna, Italy.


Trans lipids in humans originate exogenously from the ingestion of isomerized fats. An endogenous path comprising a thiyl radical-catalyzed cis-trans isomerization of cis-unsaturated phospholipids was proposed. However, whether an isomerization process might be feasible in eukaryotic cells remained to be established. Here we report the presence of trans lipids in human monocytic leukemia cell membranes (THP-1) before and after treatment with a 10 mM series of thiols. Oleic, linoleic, and arachidonic acid residues of membrane phospholipids were analyzed and, unexpectedly, an initial trans lipid content was found in control cells. Then, incubation for 24 h with thiols under physiological conditions slightly increased trans lipid content. Formation of trans isomers was also evaluated in the presence of thiol and under free radical stress induced by gamma-irradiation or by thermal decomposition of azo-compounds. The similarity of isomer trends formed under incubation and stress conditions, together with the reactivity order of fatty acid residues (arachidonic > linoleic approximately oleic), indicated a common radical path and some mechanistic considerations are advanced. These results offer the first evidence that trans lipids are formed in eukaryotic cells and confirm that thiyl radicals are harmful to the integrity of cis lipid geometry. This work motivates further studies into the relationship between lipid isomerization outcome and thiyl radicals in cellular systems, as well as the formation of trans lipids and the metabolic response to such a perturbation introduced into biological membranes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center