Format

Send to

Choose Destination
Langmuir. 2005 Apr 12;21(8):3470-4.

Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies.

Author information

1
Unidad de Actividad Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina.

Abstract

The adsorption isotherms of catechol (1,2-dihydroxybenzene) and gallic acid (3,4,5-trihydroxybenzoic acid) onto titanium dioxide (Degussa P-25) were measured at various pH values and room temperature using attenuated total reflection Fourier transform infrared (FTIR-ATR) data, processed by singular value decomposition. The affinity is largely pH independent, although the deprotonatation of the carboxylic group in gallic acid might produce a slight increase in the affinity. Catechol was shown to form two complexes, with Langmuir stability constants log K of 4.66 (strong mode) and 3.65 (weak mode). Both complexes have the same spectral signature, and mononuclear and binuclear chelate structures are proposed for them. Gallic acid chemisorbs by complexation through two -OH groups and forms one complex only, log K = 4.70. The third -OH and the pendant carboxylate do not influence much the stability of the surface complex. Comparison with literature data demonstrates that the affinity of 4-chlorocatechol is also similar, whereas 2,3-dihidroxynaphthalene and 4-nitrocatechol form more stable complexes, probably because of the solvation contribution to the overall Gibbs adsorption energy. All quoted constants refer to the surface complexation equilibria written as follows: ([triple bond]Ti-OH)2 + H2L = ([triple bond]Ti)2-L + 2H2O, i.e., as electroneutral processes. The FTIR-ATR spectra of the surface complexes are also discussed.

PMID:
15807589
DOI:
10.1021/la0476985

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center