Send to

Choose Destination
See comment in PubMed Commons below
Genes Dev. 2005 Apr 1;19(7):853-62.

Ddb1 controls genome stability and meiosis in fission yeast.

Author information

Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark.


The human UV-damaged DNA-binding protein Ddb1 associates with cullin 4 ubiquitin ligases implicated in nucleotide excision repair (NER). These complexes also contain the signalosome (CSN), but NER-relevant ubiquitination targets have not yet been identified. We report that fission yeast Ddb1, Cullin 4 (Pcu4), and CSN subunits Csn1 and Csn2 are required for degradation of the ribonucleotide reductase (RNR) inhibitor protein Spd1. Ddb1-deficient cells have >20-fold increased spontaneous mutation rate. This is partly dependent on the error-prone translesion DNA polymerases. Spd1 deletion substantially reduced the mutation rate, suggesting that insufficient RNR activity accounts for approximately 50% of observed mutations. Epistasis analysis indicated that Ddb1 contributed to mutation avoidance and tolerance to DNA damage in a pathway distinct from NER. Finally, we show that Ddb1/Csn1/Cullin 4-mediated Spd1 degradation becomes essential when cells differentiate into meiosis. These results suggest that Ddb1, along with Cullin 4 and the signalosome, constitute a major pathway controlling genome stability, repair, and differentiation via RNR regulation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center