Format

Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2005 Apr 1;77(7):1950-6.

Enzyme immobilization in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases.

Author information

1
Department of Dermatology and the Center for Future Health, University of Rochester Medical Center, Rochester, New York 14642, USA.

Abstract

Porous silicon matrixes are attractive materials for the construction of biosensors and may also have utility for the production of immobilized enzyme bioreactors. In an effort to gain a quantitative understanding of the effects of immobilization on enzyme activity, we compared the activity of glutathione-S-transferase immobilized in electrochemically etched porous silicon films (approximately 6.5 microm thick) with the enzyme in solution. Kinetic measurements were made by varying the glutathione concentration while maintaining a fixed saturating concentration of 1-chloro-2,4-dinitrobenzene. The reaction kinetics follow steady-state equilibrium behavior. The specific activity of the free enzyme in solution is approximately 4x higher than the immobilized enzyme, for which we measured an apparent K'(m)(GSH) value of 1.0 +/- 0.3. The maximum velocity, V'(max), is linearly proportional to immobilized enzyme concentration, but the magnitude is approximately 20 times lower than that in solution. Results suggest approximately 25% of the enzyme is bound with the catalytic site in an inactive conformation or in a hindered orientation. Finally, the effects of hydration and exposure to denaturants on the immobilized enzyme activity are presented.

PMID:
15801723
DOI:
10.1021/ac0486185
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center