Format

Send to

Choose Destination
See comment in PubMed Commons below
J Fam Psychol. 2005 Mar;19(1):98-110.

Using multilevel models to analyze couple and family treatment data: basic and advanced issues.

Author information

1
Travis Research Institute, Fuller Graduate School of Psychology, Pasadena, CA 91101, USA. datkins@fuller.edu

Abstract

Couple and family treatment data present particular challenges to statistical analyses. Partners and family members tend to be more similar to one another than to other individuals, which raises interesting possibilities in the data analysis but also causes significant problems with classical, statistical methods. The present article presents multilevel models (also called hierarchical linear models, mixed-effects models, or random coefficient models) as a flexible analytic approach to couple and family longitudinal data. The article reviews basic properties of multilevel models but focuses primarily on 3 important extensions: missing data, power and sample size, and alternative representations of couple data. Information is presented as a tutorial, with a Web appendix providing datasets with SPSS and R code to reproduce the examples.

PMID:
15796656
DOI:
10.1037/0893-3200.19.1.98
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Psychological Association
    Loading ...
    Support Center