Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2005 Apr;79(8):5116-28.

Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers.

Author information

Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Fort Collins, Colorado, USA.


Five dengue (DEN) virus-specific R5F2R4 peptide-conjugated phosphorodiamidate morpholino oligomers (P4-PMOs) were evaluated for their ability to inhibit replication of DEN virus serotype 2 (DEN-2 virus) in mammalian cell culture. Initial growth curves of DEN-2 virus 16681 were obtained in Vero cells incubated with 20 microM P4-PMO compounds. At 6 days after infection, a P4-PMO targeting the 3'-terminal nucleotides of the DEN-2 virus genome and a random-sequence P4-PMO showed relatively little suppression of DEN-2 virus titer (0.1 and 0.9 log10, respectively). P4-PMOs targeting the AUG translation start site region of the single open reading frame and the 5' cyclization sequence region had moderate activity, generating 1.6- and 1.8-log10 reductions. Two P4-PMO compounds, 5'SL and 3'CS (targeting the 5'-terminal nucleotides and the 3' cyclization sequence region, respectively), were highly efficacious, each reducing the viral titer by greater than 5.7 log10 compared to controls at 6 days after infection with DEN-2 virus. Further experiments showed that 5'SL and 3'CS inhibited DEN-2 virus replication in a dose-dependent and sequence-specific manner. Treatment with 10 microM 3'CS reduced the titers of all four DEN virus serotypes, i.e., DEN-1 (strain 16007), DEN-2 (16681), DEN-3 (16562), and DEN-4 (1036) viruses by over 4 log10, in most cases to below detectable limits. The extent of 3'CS efficacy was affected by the timing of compound application in relation to viral infection of the cells. The 5'SL and 3'CS P4-PMOs did not suppress the replication of West Nile virus NY99 in Vero cells. These data indicate that further evaluation of the 5'SL and 3'CS compounds as potential DEN virus therapeutics is warranted.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center