Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2005 Apr 29;96(8):815-7. Epub 2005 Mar 24.

Adenoviral gene transfer of mutant phospholamban rescues contractile dysfunction in failing rabbit myocytes with relatively preserved SERCA function.

Author information

Department of Physiology, Loyola University Chicago, Maywood, Ill, USA.


In heart failure (HF) a main factor in reduced contractility is reduced SR Ca2+ content and reversed force-frequency response (FFR), ie, from positive to negative. Our arrhythmogenic rabbit HF model exhibits decreased contractility mainly due to an increase in Na/Ca exchange (NCX) activity (with only modest decrease in SR Ca2+-ATPase (SERCA) function), similar to many end-stage HF patients. Here we test whether phospholamban (PLB) inhibition using a dominant-negative mutant PLB adenovirus (K3E/R14E, AdPLB-dn, with beta-galactosidase adenovirus as control) could enhance SERCA function and restore Ca2+ transients and positive FFR in ventricular myocytes from these HF rabbits. HF myocytes infected with AdPLB-dn (versus control) had enhanced Ca2+ transient amplitude (2.0+/-0.1 versus 1.6+/-0.05 F/Fo at 0.5 Hz, P<0.05) and had a positive FFR, whereas acutely isolated HF myocytes or those infected with Adbetagal had negative FFR. Ca2+ transients declined faster in AdPLB-dn versus Adbetagal myocytes (RT50%: 317+/-29 versus 551+/-90 ms at 0.5 Hz, P<0.05) and had an increased SR Ca2+ load (3.5+/-0.3 versus 2.6+/-0.2 F/Fo at 0.5 Hz, P<0.05), indicative of increased SERCA function. Furthermore, this restoration of function was not due to changes in NCX or SERCA expression. Thus, increasing SERCA activity in failing myocytes by AdPLB-dn gene transfer reversed the contractile dysfunction (and restored positive FFR) by increasing SR Ca2+ load. This approach could enhance contractile function in failing hearts of various etiologies, even here where reduced SERCA activity is not the main dysfunction.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center