Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2005 Jul;289(1):C207-16. Epub 2005 Mar 23.

Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.

Author information

1
Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, College of Medicine and Public Health, 201 Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Ave., Columbus, Ohio 43210, USA.

Abstract

Many tissues produce reactive oxygen species (ROS) during reoxygenation after hypoxia or ischemia; however, whether ROS are formed during hypoxia is controversial. We tested the hypothesis that ROS are generated in skeletal muscle during exposure to acute hypoxia before reoxygenation. Isolated rat diaphragm strips were loaded with dihydrofluorescein-DA (Hfluor-DA), a probe that is oxidized to fluorescein (Fluor) by intracellular ROS. Changes in fluorescence due to Fluor, NADH, and FAD were measured using a tissue fluorometer. The system had a detection limit of 1 microM H2O2 applied to the muscle superfusate. When the superfusion buffer was changed rapidly from 95% O2 to 0%, 5%, 21%, or 40% O2, transient elevations in Fluor were observed that were proportional to the rise in NADH fluorescence and inversely proportional to the level of O2 exposure. This signal could be inhibited completely with 40 microM ebselen, a glutathione peroxidase mimic. After brief hypoxia exposure (10 min) or exposure to brief periods of H2O2, the fluorescence signal returned to baseline. Furthermore, tissues loaded with the oxidized form of the probe (Fluor-DA) showed a similar pattern of response that could be inhibited with ebselen. These results suggest that Fluor exists in a partially reversible redox state within the tissue. When Hfluor-loaded tissues were contracted with low-frequency twitches, Fluor emission and NADH emission were significantly elevated in a way that resembled the hypoxia-induced signal. We conclude that in the transition to low intracellular P(O2), a burst of intracellular ROS is formed that may have functional implications regarding skeletal muscle O2-sensing systems and responses to acute metabolic stress.

PMID:
15788484
DOI:
10.1152/ajpcell.00449.2004
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center