Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2005 Mar 30;127(12):4403-15.

The electronic structure of the isoelectronic, square-planar complexes [FeII(L)2]2- and [CoIII(L Bu)2]- (L2- and (L Bu)2-=benzene-1,2-dithiolates): an experimental and density functional theoretical study.

Author information

Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.


The electronic structures of two formally isoelectronic transition-metal dithiolato complexes [Fe(L)2]2- (1) and [Co(L Bu)2]1- (2) both possessing a spin triplet ground state (St=1) have been investigated by various spectroscopic and density functional methods; H2L Bu represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol and H2L is the corresponding unsubstituted benzene-1,2-dithiol. An axial zero-field splitting (D) of +32 cm(-1) for 2 has been measured independently by SQUID magnetometry, far-infrared absorption, and variable-temperature and variable-field (VTVH) magnetic circular dichroism spectroscopies. A similar D value of +28 cm(-1) is obtained for 1 on the basis of VTVH SQUID measurements. The absorption spectra of 1 and 2 are found, however, to be very different. Complex 1 is light yellow in color with no intense transition in the visible region, whereas 2 is deep blue. DFT calculations establish that the electronic structures of the [Fe(L)2](2-) and [Co(L)2]1- anions are very different and explain the observed differences in their absorption spectra. On the basis of these spectroscopic and theoretical analyses, 1 is best described as containing an intermediate spin FeII ion, whereas for the corresponding cobalt complex, oxidation states describing a d6 (CoIII) or d7 (CoII) electron configuration cannot be unambiguously assigned. The physical origin of the large zero-field splitting in both 1 and 2 is found to be due to the presence of low-energy spin-conserved d-d excitations which lead to a large Dzz through efficient spin-orbit coupling. Differential covalency effects appear to be of limited importance for this property.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center