Send to

Choose Destination
J Comp Neurol. 1992 Feb 22;316(4):391-405.

Polyaxonal amacrine cells of rabbit retina: morphology and stratification of PA1 cells.

Author information

Department of Anatomy, University of Calgary, Faculty of Medicine, Alberta, Canada.


Polyaxonal amacrine cells are a new class of amacrine cell bearing one to six branching, axon-like processes, closely resembling the axons of Golgi type II cells found elsewhere in the central nervous system. Of the four types of polyaxonal amacrine cell that we have recognized in rabbit retina, three have been described previously in brief communications, and one is the subject of this paper. Type 1 polyaxonal (PA1) amacrine cells have larger cell bodies than most amacrine cells in Golgi preparations, averaging about 13 microns in diameter. These are typically positioned interstitially in the middle of the inner plexiform layer (IPL), although some are also found in the amacrine and ganglion cell layers. Axons and dendrites are broadly stratified in the middle of the IPL, in the vicinity of the a/b sublaminar border. Sparsely branching dendrites have a conventional appearance, branching at a narrow angle, and giving rise to smaller daughter branches, which taper gradually toward their termination. An unusual feature of the dendrites is the zig-zag course of some terminal branches. Clusters of small, pedunculated spines are common on proximal dendrites, and spines are virtually absent on axons. Axons emerge from proximal dendrites within 50 microns of the soma, and more rarely from the soma, in a tapering initial segment, commonly interrupted by one or two large swellings. Subsequent branching is at a wide angle, and the fine caliber is maintained in the transition from parent to daughter branches. The uniform thickness of the axonal branches is interrupted at intervals by boutons en passant. Although the extent of the dendritic tree is large, exceeding 500 microns in radial extent from the cell body, for cells a few millimeters distant from the visual streak, the axonal tree is much larger, and its radial extent is measured in millimeters. PA1 amacrine cells are believed to be polarized in their functional organization, with a primarily recipient dendritic tree and a primarily transmissive axonal tree. PA1 amacrine cells co-stratify with nab cone bipolar cells and with certain small tufted amacrine and ganglion cells at the a/b sublaminar border. The co-stratification of both axons and dendrites at the a/b sublaminar border of the IPL suggests that PA1 amacrine cells are important modulators of neural activity in the middle of the IPL, affecting both ON and OFF responses, and perhaps ON-OFF cells selectively.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center