Format

Send to

Choose Destination
Biophys J. 2005 Jun;88(6):4421-33. Epub 2005 Mar 18.

Kinetic properties of DM-nitrophen binding to calcium and magnesium.

Author information

1
Department of Neurology, University of California, Los Angeles, 90095, USA.

Abstract

Caged-Ca(2+) compounds such as nitrophenyl-EGTA (NP-EGTA) and DM-nitrophen (DMn) are extremely useful in biological research, but their use in live cells is hampered by cytoplasmic [Mg(2+)]. We determined the properties of Ca(2+) release from NP-EGTA and DMn by using Oregon green BAPTA-5N to measure changes in [Ca(2+)] after ultraviolet flash photolysis in vitro, with or without Mg(2+) present. A large fraction (65%) of NP-EGTA, which has a negligible Mg(2+) affinity, uncages with a time constant of 10.3 ms, resulting in relatively slow increases in [Ca(2+)]. Uncaging of DMn is considerably faster, but DMn has a significant affinity for Mg(2+) to complicate the uncaging process. With experimentally determined values for the Ca(2+) and Mg(2+) binding/unbinding rates of DMn and NP-EGTA, we built a mathematical model to assess the utility of NP-EGTA and DMn in rapid Ca(2+)-uncaging experiments in the presence of Mg(2+). We discuss the advantages and disadvantages of using each compound under different conditions. To determine the kinetics of Ca(2+) binding to biologically relevant Ca(2+) buffers, such as Ca(2+)-binding proteins, the use of DMn is preferable even in the presence of Mg(2+).

PMID:
15778435
PMCID:
PMC1305669
DOI:
10.1529/biophysj.104.057745
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center