Format

Send to

Choose Destination
Exp Brain Res. 2005 Jul;164(2):148-54. Epub 2005 Mar 18.

Morphometric characterization of synapses in the primate prefrontal cortex formed by afferents from the mediodorsal thalamic nucleus.

Author information

1
Yale University School of Medicine, Department of Neurobiology, Sterling Hall of Medicine B408, 333 Cedar Street, New Haven, CT, 0651, USA. negyessy@ana.sote.hu

Abstract

The main thalamic afferentation of the prefrontal cortex (PFC) originates in the mediodorsal nucleus (MD). Although it is suggested that this pathway is affected in schizophrenia, there is a lack of functional and structural data regarding its synaptic organization. The scope of this study was to characterize the ultrastructural features of thalamocortical synapses formed by afferents from the MD by applying anterograde tract tracing, immunohistochemical detection of parvalbumin (PV, a probable marker of thalamocortical endings), and quantitative electron microscopic techniques to the PFC of the macaque monkey. Our findings indicate that anterogradely-labeled and PV-immunoreactive boutons exhibit similar ultrastructural properties, characterized by their larger size, higher incidence of release sites and a higher occurrence of mitochondria when compared to non-labeled, excitatory-like endings in the middle layers of the PFC. Although most of the contacts were made on spines in both cases, PV-immunopositive axon terminals apparently targeted dendritic shafts at about twice the frequency found for anterogradely-labeled afferents from the MD (20.5% and 9.5%, respectively). This result suggests diversity among thalamocortical and/or PV-immunoreactive axon terminals of the PFC. In accordance with studies in other cortical areas, our findings suggest that corollary discharge through the mediodorsal thalamocortical projection is also adapted to synaptic transmission with high efficacy and probably exhibits marked short-term temporal dynamics in the PFC.

PMID:
15776222
DOI:
10.1007/s00221-005-2237-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center