Send to

Choose Destination
See comment in PubMed Commons below
Genes Dev. 1992 May;6(5):801-14.

A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation.

Author information

Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032.


The yeast RAP1 protein is a sequence-specific DNA-binding protein that functions as both a repressor and an activator of transcription. RAP1 is also involved in the regulation of telomere structure, where its binding sites are found within the terminal poly(C1-3A) sequences. Previous studies have indicated that the regulatory function of RAP1 is determined by the context of its binding site and, presumably, its interactions with other factors. Using the two-hybrid system, a genetic screen for the identification of protein-protein interactions, we have isolated a gene encoding a RAP1-interacting factor (RIF1). Strains carrying gene disruptions of RIF1 grow normally but are defective in transcriptional silencing and telomere length regulation, two phenotypes strikingly similar to those of silencing-defective rap1s mutants. Furthermore, hybrid proteins containing rap1s missense mutations are defective in an interaction with RIF1 in the two-hybrid system. Taken together, these data support the idea that the rap1s phenotypes are attributable to a failure to recruit RIF1 to silencers and telomeres and suggest that RIF1 is a cofactor or mediator for RAP1 in the establishment of a repressed chromatin state at these loci. By use of the two-hybrid system, we have isolated a mutation in RIF1 that partially restores the interaction with rap1s mutant proteins.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center