Format

Send to

Choose Destination
J Cell Biol. 2005 Mar 14;168(6):911-20.

Inhibition of NGF deprivation-induced death by low oxygen involves suppression of BIMEL and activation of HIF-1.

Author information

1
Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.

Abstract

Changes in O(2) tension can significantly impact cell survival, yet the mechanisms underlying these effects are not well understood. Here, we report that maintaining sympathetic neurons under low O(2) inhibits apoptosis caused by NGF deprivation. Low O(2) exposure blocked cytochrome c release after NGF withdrawal, in part by suppressing the up-regulation of BIM(EL). Forced BIM(EL) expression removed the block to cytochrome c release but did not prevent protection by low O(2). Exposing neurons to low O(2) also activated hypoxia-inducible factor (HIF) and expression of a stabilized form of HIF-1alpha (HIF-1alpha(PP-->AG)) inhibited cell death in normoxic, NGF-deprived cells. Targeted deletion of HIF-1alpha partially suppressed the protective effect of low O(2), whereas deletion of HIF-1alpha combined with forced BIM(EL) expression completely reversed the ability of low O(2) to inhibit cell death. These data suggest a new model for how O(2) tension can influence apoptotic events that underlie trophic factor deprivation-induced cell death.

PMID:
15767462
PMCID:
PMC2171791
DOI:
10.1083/jcb.200407079
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center