Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2005 Mar 22;44(11):4157-70.

Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA.


An important step in the substrate recognition of the Neurospora Varkud Satellite (VS) ribozyme is the formation of a magnesium-dependent loop/loop interaction between the terminal loops of stem-loops I and V. We have studied the structure of stem-loop V by nuclear magnetic resonance spectroscopy and shown that it adopts a U-turn conformation, a common motif found in RNA. Structural comparisons indicate that the U-turn of stem-loop V fulfills some but not all of the structural characteristics found in canonical U-turn structures. This U-turn conformation exposes the Watson-Crick faces of the bases within stem-loop V (G697, A698, and C699) and makes them accessible for interaction with stem-loop I. Using chemical-shift mapping, we show that magnesium ions interact with the loop of the isolated stem-loop V and induce a conformational change that may be important for interaction with stem-loop I. This study expands our understanding of the role of U-turn motifs in RNA structure and function and provides insights into the mechanism of substrate recognition in the VS ribozyme.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center