Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2005 Aug;26(23):4847-55.

The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture.

Author information

  • 1Department of Orthopaedic Surgery, Keio University Hospital, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan.


Our research group aims to develop an osteochondral composite using type II collagen gel with hydroxyapatite (HAp) deposited on one side. Soaking gels in Ca2+ and phosphate solution is indispensable to HAp deposition, so relationships between cell behavior and Ca2+ concentration were examined in two- and three-dimensional cultures. The present results indicate that 2-4 mM Ca2+ is suitable for proliferation and survival of osteoblasts, whereas slightly higher concentrations (6-8 mM) favor osteoblast differentiation and matrix mineralization in both 2- and 3-dimensional cultures. Higher concentrations (>10 mM) are cytotoxic. Purely from the perspective of calcium deposition, higher concentrations lead to increased accumulation of Ca2+. Culturing cells in phosphate-containing gel in media with Ca2+ also leads to time-dependent formation of HAp in the gel. Considering the viability of embedded cells, culturing scaffolds in media with Ca2+ concentrations around 5mM is useful for both HAp deposition and osteoblast behavior.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk