Format

Send to

Choose Destination
Cytokine. 2005 Mar 7;29(5):229-35.

Involvement of TL1A and DR3 in induction of pro-inflammatory cytokines and matrix metalloproteinase-9 in atherogenesis.

Author information

1
Department of Genetic Engineering, Kyungpook National University, Taegu 702-701, Republic of Korea.

Abstract

TL1A (VEGI/TNFSF15) is the ligand for DR3 (TNFRSF12) and is a newly identified member of the tumor necrosis factor superfamily (TNFSF). Previously, DR3 has been shown to have a role in atherogenesis through stimulation of matrix degrading enzymes including matrix metalloproteinase (MMP)-9. Immunohistochemical staining of human carotid atherosclerotic plaques revealed a high-level expression of TL1A in regions rich in macrophage/foam cells. To investigate the role of TL1A and DR3 in the functioning of macrophage/foam cells in relation to atherogenesis, we have analyzed cellular events mediated by TL1A and DR3 in a human macrophage-like cell line, THP-1. Treatment of THP-1 cells with immobilized anti-DR3 monoclonal antibody in combination with IFN-gamma caused induction of pro-atherogenic cytokines/chemokines such as TNF-alpha, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-8. Treatment of THP-1 cells with recombinant TL1A in combination with IFN-gamma also caused induction of MMP-9 and IL-8. Furthermore, the expression of DR3 in peripheral blood monocytes was induced after atherogenic stimulation. These data suggest that TL1A and DR3 is involved in atherosclerosis via the induction of pro-inflammatory cytokines/chemokines and decreasing plaque stability by inducing extracellular matrix degrading enzymes.

PMID:
15760679
DOI:
10.1016/j.cyto.2004.12.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center