Send to

Choose Destination
Microbiology. 2005 Mar;151(Pt 3):707-716. doi: 10.1099/mic.0.27482-0.

Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour.

Author information

Biochemical Engineering Division, GBF - National Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.


The metabolic dynamics of the Escherichia coli K-12 strain TG1 to feast and famine were studied in glucose-limited steady-state cultures by up- and downshifts of the dilution rate, respectively. An uncoupling of anabolic and catabolic rates was observed upon dilution rate upshifts, apparent through immediately increased glucose uptake rates which were not accompanied by an immediate increase of the growth rate but instead resulted in the temporary excretion of methylglyoxal, D- and L-lactate, pyruvate and, after a delay, acetate. The energetic state of the cell during the transient was followed by measuring the adenylate energy charge, which increased within 2 min after the upshift and declined thereafter until a new steady-state level was reached. In the downshift experiment, the adenylate energy charge behaved inversely; no by-products were formed, indicating a tight coupling of anabolism and catabolism. Both dilution rate shifts were accompanied by an instantaneous increase of cAMP, presaging the subsequent changes in metabolic pathway utilization. Intracellular key metabolites of the Embden-Meyerhof-Parnas (EMP) pathway were measured to evaluate the metabolic perturbation during the upshift. Fructose 1,6-diphosphate (FDP) and dihydroxyacetone phosphate (DHAP) increased rapidly after the upshift, while glyceraldehyde 3-phosphate decreased. It is concluded that this imbalance at the branch-point of FDP induces the methylglyoxal (MG) pathway, a low-energy-yielding bypass of the lower EMP pathway, through the increasing level of DHAP. MG pathway activation after the upshift was simulated by restricting anabolic rates using a stoichiometry-based metabolic model. The metabolic model predicted that low-energy-yielding catabolic pathways are utilized preferentially in the transient after the upshift. Upon severe dilution rate upshifts, an oscillatory behaviour occurred, apparent through long-term oscillations of respiratory activity, which started when the cytotoxic compound MG reached a threshold concentration of 1.5 mg l(-1) in the medium.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center