Format

Send to

Choose Destination
See comment in PubMed Commons below
J Anim Sci. 2005 Apr;83(4):803-9.

Effect of testosterone on insulin-like growth factor-I, androgen receptor, and myostatin gene expression in splenius and semitendinosus muscles in sheep.

Author information

  • 1Department of Animal Science, Cornell University, Ithaca, NY 14853, USA. rgm9@cornell.edu <rgm9@cornell.edu>

Abstract

Testosterone is known to act differentially on skeletal muscle from different regions. Two genes likely to mediate the testosterone effect are IGF-I, an important growth regulator acting in an autocrine and paracrine way, and androgen receptor (AR), as receptor density could account for differential muscle growth. Another muscle-specific gene that may play a role in differential muscle growth is myostatin, a member of the transforming growth factor-beta superfamily, shown to be a negative regulator of skeletal muscle mass. The objective of this study was to quantify and compare the expression of these three genes in two different skeletal muscles in sheep. East Friesian x Dorset-sired ram lambs from Dorset ewes were used in a 2 x 4 factorial experiment. Eighteen sets of twins were assigned to four age groups corresponding to 77, 105, 133, and 161 d of age, and one individual from each set was castrated at birth. Total RNA was extracted from samples of splenius (SP) and semitendinosus muscles collected at the time of slaughter. Insulin-like growth factor-I mRNA was measured using competitive reverse-transcription PCR. Androgen receptor and myostatin mRNA were measured by ribonuclease protection assay with standard curves. Weight of SP was greater than semitendinosus in rams compared with wethers at 105, 133, and 161 d (P = 0.05, P = 0.04, and P = 0.02, respectively). The difference in IGF-I mRNA levels between the two muscles was greater in rams than in wethers at 133 (P = 0.001) and 161 d (P = 0.014), and the difference in AR mRNA levels was greater in rams than in wethers at 105, 133, and 161 d (P = 0.002, P < 0.001, and P < 0.001, respectively), with greater abundance in the SP. No difference was found in myostatin mRNA level between the two muscles in rams and wethers at any age. These results suggest that locally produced IGF-I and the regulation of AR expression are important for sexually dimorphic muscle growth patterns.

PMID:
15753334
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Science Societies
    Loading ...
    Support Center