Send to

Choose Destination
See comment in PubMed Commons below
J Am Soc Mass Spectrom. 2005 Mar;16(3):333-9.

Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: applications to neutral small carbohydrates.

Author information

  • 1Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.


In this work, we reported on the advantages of immobilized carbon nanotubes as a novel MALDI-matrix. Recently, carbon nanotubes have been reported to be an effective MALDI matrix for small molecules (Anal. Chem.2003, 75, 6191), as it can eliminate the interfering matrix peaks as well as form a web morphology to fully disperse the analyte and allow strong ultraviolet absorption for enhanced pulsed laser desorption and ionization. In our study, to overcome the problem that the carbon nanotube matrix may fly off from the target, a type of polyurethane adhesive, NIPPOLAN-DC-205, is introduced to immobilize carbon nanotubes on the target, which enables widespread application of carbon nanotubes as matrix for MALDI-MS analysis. At the same time, the properties of the carbon nanotubes as an efficient matrix remained after immobilization. The presence of NIPPOLAN-DC-205 increases the time for analysis at a particular desorption spot by minimizing the time-consuming search for "hot spots" and facilitating experiments such as post source decay (PSD) which need longer-lasting signals. Moreover, NIPPOLAN-DC-205 produces no interference peaks and can easily be cleaned with acetone. Fast evaporation technology may be used to enhance signal reproducibility in MALDI analysis using carbon nanotubes as matrix. Consequently, the applicability of the carbon nanotube as matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of low molecular mass analytes is highly improved. The feasibility of the method employing polyurethane is demonstrated by comparison of the results produced from the carbon nanotube matrix with and without immobilization. In addition, neutral small carbohydrates, which are difficult to be ionized normally, can be cationized with high efficiency by MALDI-TOF-MS using the immobilized carbon nanotube matrix. The method was further applied to analyze peptides and detect urine glucose successfully.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for Elsevier Science
    Loading ...
    Support Center