Format

Send to

Choose Destination
Evol Dev. 2005 Mar-Apr;7(2):130-41.

Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata.

Author information

1
Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.

Abstract

Bat forelimbs are highly specialized for sustained flight, providing a unique model to explore the genetic programs that regulate vertebrate limb diversity. Hoxd9-13 genes are important regulators of stylopodium, zeugopodium, and autopodium development and thus evolutionary changes in their expression profiles and biochemical activities may contribute to divergent limb morphologies in vertebrates. We have isolated the genomic region that includes Hoxd12 and Hoxd13 from Carollia perspicillata, the short-tailed fruit bat. The bat Hoxd13 gene encodes a protein that shares 95% identity with human and mouse HOXD13. The expression pattern of bat Hoxd13 mRNA during limb development was compared with that of mouse. In bat and mouse hindlimbs, the expression patterns of Hoxd13 are relatively similar. However, although the forelimb Hoxd13 expression patterns in both organisms during early limb bud stages are similar, at later stages they diverge; the anterior expression boundary of bat Hoxd13 is posterior-shifted relative to the mouse. These findings, compared with the Hoxd13 expression profiles of other vertebrates, suggest that divergent Hoxd13 expression patterns may contribute to limb morphological variation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center