Send to

Choose Destination
Eur J Neurosci. 2005 Feb;21(3):803-7.

Low doses of bromo- and iododeoxyuridine produce near-saturation labeling of adult proliferative populations in the dentate gyrus.

Author information

Department of Pediatrics, Division of Developmental Biology, Room 3464, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.


Cell proliferation can be detected by the incorporation of tritiated thymidine (3H-dT) or halopyrimidines during DNA synthesis in progenitor cells. Administration of two thymidine analogues at different times can further determine the cell-cycle kinetics of proliferating cells. Traditionally, this was done by combining bromodeoxyuridine (BrdU) immunocytochemistry and 3H-dT autoradiography, or by BrdU and iododeoxyuridine (IdU) double-labeling using two mouse antibodies. However, these methods either require lengthy exposure time or involve complicated histological procedures for differentiating between two antibodies of the same species. Here we report a simple and reliable method of distinguishing BrdU- and IdU-labeled cells by immunofluorescence. This method uses a mouse monoclonal antibody that recognizes both BrdU and IdU and a rat anti-BrdU antibody that has no cross-reactivity with IdU. When combined with species-specific secondary antibodies that are conjugated to different fluorophores, this method identifies BrdU- and IdU-incorporation as doubly and singly labeled cells, respectively. This method has broad applications. First, we demonstrate that this method can distinguish mouse cortical neurons generated on different embryonic days. Second, by administering IdU and BrdU at varying intervals, we used this method to calculate that the length of S-phase of neural progenitor cells in the adult mouse dentate gyrus is approximately 6 h. Finally, we show that a six-fold higher concentration of IdU detects only 10% more cells than the standard dose of BrdU (50 mg/kg) using the double-labeling method. These results suggest that the standard dose of BrdU is sufficient to label the majority of proliferative populations in the S-phase in pulse labeling experiments.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center