Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2005 Mar;79(6):3468-78.

Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway.

Author information

1
Department of Microbiology and the Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is the major biological cofactor contributing to development of Kaposi's sarcoma. KSHV establishes a latent infection in human B cells expressing the latency-associated nuclear antigen (LANA), a critical factor in the regulation of viral latency. LANA controls KSHV latent infection through repression of RTA, an activator of many lytic promoters. RTA activates the expression of several lytic viral genes by interacting with recombination signal sequence-binding protein Jkappa (RBP-Jkappa), a transcriptional repressor and the target of the Notch signaling pathway. The recognition that a number of KSHV lytic gene promoters, including RTA, contain RBP-Jkappa binding sites raised the possibility that RBP-Jkappa-mediated repression may be central to the establishment of latency. Here, we tested this hypothesis by examining the regulation of RTA by LANA through binding to RBP-Jkappa. This study demonstrates that LANA physically associates with RBP-Jkappa in vitro and in KSHV-infected cells, with the complex formed capable of binding to RBP-Jkappa cognate sequences. RBP-Jkappa binding sites within the RTA promoter have been found to be critical for LANA-mediated repression. Our study describes a novel mechanism through which LANA maintains KSHV latency by targeting a major downstream effector of the Notch signaling pathway.

PMID:
15731241
PMCID:
PMC1075732
DOI:
10.1128/JVI.79.6.3468-3478.2005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center