Send to

Choose Destination
J Physiol. 2005 May 1;564(Pt 3):737-49. Epub 2005 Feb 24.

Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum.

Author information

Department of Physiology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.


Unloading of endoplasmic reticulum (ER) Ca(2+) stores activates influx of extracellular Ca(2+) through 'store-operated' Ca(2+) channels (SOCs) in the plasma membrane (PM) of most cells, including astrocytes. A key unresolved issue concerning SOC function is their spatial relationship to ER Ca(2+) stores. Here, using high resolution imaging with the membrane-associated Ca(2+) indicator, FFP-18, it is shown that store-operated Ca(2+) entry (SOCE) in primary cultured mouse cortical astrocytes occurs at plasma membrane-ER junctions. In the absence of extracellular Ca(2+), depletion of ER Ca(2+) stores using cyclopiazonic acid, an ER Ca(2+)-ATPase inhibitor, and caffeine transiently increases the sub-plasma-membrane Ca(2+) concentration ([Ca(2+)](SPM)) within a restricted space between the plasma membrane and adjacent ER. Restoration of extracellular Ca(2+) causes localized Ca(2+) influx that first increases [Ca(2+)](SPM) in the same restricted regions and then, with a delay, in ER-free regions. Antisense knockdown of the TRPC1 gene, proposed to encode endogenous SOCs, markedly reduces SOCE measured with Fura-2. High resolution immunocytochemistry with anti-TRPC1 antibody reveals that these TRPC-encoded SOCs are confined to the PM microdomains adjacent to the underlying 'junctional' ER. Thus, Ca(2+) entry through TRPC-encoded SOCs is closely linked, not only functionally, but also structurally, to the ER Ca(2+) stores.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center