Format

Send to

Choose Destination
Diabetologia. 2005 Mar;48(3):486-95. Epub 2005 Feb 24.

Activation of 12-lipoxygenase in proinflammatory cytokine-mediated beta cell toxicity.

Author information

1
Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Virginia, PO Box 801405, Charlottesville, VA, 22908-1405, USA.

Abstract

AIMS/HYPOTHESIS:

Beta cell inflammation and cytokine-induced toxicity are central to autoimmune diabetes development. Lipid mediators generated upon lipoxygenase (LO) activation can participate in inflammatory pathways. 12LO-deficient mice are resistant to streptozotocin-induced diabetes. This study sought to characterise the cellular processes involving 12LO-activation lipid inflammatory mediator production in cytokine-treated pancreatic beta cells.

METHODS:

Islets and beta cell lines were treated with a combination of IL-1beta, IFN-gamma and TNF-alpha, or the 12LO product 12(S)-hydroxyeicosatetraenoic acid (HETE). Insulin secretion was measured using an enzyme immunoassay, and cell viability was evaluated using an in situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay. 12LO activity was evaluated and 12LO protein levels were determined using immunoblotting with a selective leucocyte type 12LO antibody. Cellular localisation of 12LO was evaluated using immunocytochemistry.

RESULTS:

Basal expression of leucocyte type 12LO protein was found in human and mouse islets and in several rodent beta cell lines. In mouse beta-TC3 cells, and in human islets, cytokines induced release of 12-HETE within 30 min. Cytokine addition also induced a rapid translocation of 12LO protein from the cytosol to the nucleus of beta-TC3 cells as shown by subcellular fractionation and immunostaining. Cytokine-induced cell death and inhibition of insulin secretion were partially reversed by baicalein, a 12LO inhibitor. 12(S)-HETE inhibited beta-TC3 cell insulin release in a time- and concentration-dependent manner. Incubating beta-TC3 cells with 100 nmol/l of 12(S)-HETE resulted in a 57% reduction in basal insulin release (6 h), and a 17% increase in cell death (18 h) as compared with untreated cells. 12(S)-HETE activated the stress-activated protein kinase c-Jun N-terminal kinase and p38 within 15 min, as judged by increased kinase protein phosphorylation.

CONCLUSIONS/INTERPRETATION:

The data suggest that inflammatory cytokines rapidly activate 12LO and show for the first time that cytokines induce 12LO translocation. The effects of 12-HETE on insulin secretion, cytotoxicity and kinase activation were similar to the effects seen with cytokines. The results provide mechanistic information of cytokine-induced toxic effects on pancreatic beta cells and support the hypothesis that blocking 12LO activation could provide a new therapeutic way to protect pancreatic beta cells from autoimmune injury.

PMID:
15729574
DOI:
10.1007/s00125-005-1673-y
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center