Send to

Choose Destination
See comment in PubMed Commons below
Cell Mol Life Sci. 2005 Feb;62(3):344-54.

Gene expression in spermiogenesis.

Author information

Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City 565-0871, Japan.


Germ cells convey parental genes to the next generation, and only germ cells perform meiosis, which is a mechanism that preserves the parental genes. The fusion of the products of germ cell meiosis, the haploid sperm and egg, creates the next generation. Sperm are the haploid germ cells that contribute genes to the egg. In preparation for this, the haploid round spermatids produced by meiosis undergo drastic morphological changes to become sperm. During this process of spermiogenesis, the nuclear form of the haploid germ cell takes shape, the mitochondria are rearranged in a specific manner, the flagellum develops and the acrosome forms. Spermatogenesis is supported by precise and orderly regulation of gene expression during the changes in chromatin structure, when protamine replaces histone. In this report, we summarize the molecular mechanisms involved in spermiogenesis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center