Send to

Choose Destination
Neuron. 2005 Feb 17;45(4):563-73.

An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.

Author information

Center for Basic Neuroscience, Department of Physiology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390, USA.


Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable pool of limited size. Interestingly, vesicles in this spontaneously labeled pool were more likely to re-fuse spontaneously compared to vesicles labeled with activity. We found that blocking vesicle refilling at rest selectively depleted neurotransmitter from spontaneously fusing vesicles without significantly altering evoked transmission. Furthermore, in the absence of the vesicle SNARE protein synaptobrevin (VAMP), activity-dependent and spontaneously recycling vesicles could mix, suggesting a role for synaptobrevin in the separation of the two pools. Taken together these results suggest that spontaneously recycling vesicles and activity-dependent recycling vesicles originate from distinct pools with limited cross-talk with each other.

Comment in

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center