Format

Send to

Choose Destination
Neuron. 2005 Feb 17;45(4):553-61.

Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons.

Author information

1
Department of Neuroscience, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA. jreisert@jhmi.edu

Abstract

In vertebrate olfactory receptor neurons (ORNs), the odorant-triggered receptor current flows through two distinct ion channels on the sensory cilia: Ca2+ influx through a cyclic nucleotide-gated (CNG) channel followed by Cl- efflux through a Ca2+-activated anion channel. The excitatory Cl- current amplifies the small CNG current and crucially depends on a high intracellular Cl- concentration. We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current. Surprisingly, immunocytochemistry indicates that NKCC1 is located on the somata and dendrites of ORNs rather than the cilia, where transduction occurs. This topography is remarkably similar to the situation in secretory epithelial cells, where basolateral Cl- uptake and apical Cl- efflux facilitate transepithelial fluid movement. Thus, a single functional architecture serves two entirely different purposes, probably underscoring the epithelial origin of the ORNs.

PMID:
15721241
PMCID:
PMC2877386
DOI:
10.1016/j.neuron.2005.01.012
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center