Send to

Choose Destination
Pediatr Res. 2005 Apr;57(4):481-7. Epub 2005 Feb 17.

Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats.

Author information

Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.


Erythropoietin (Epo) plays a central role in erythropoiesis but also has neuroprotective properties. Recently, Epo-related neuroprotective studies used a hypoxic-ischemic neonatal model, which is different from focal stroke, a frequent cause of neonatal brain injury. We report on the effects of Epo treatment given after focal stroke and its potential neuroprotective mechanisms in postnatal day 7 rats with focal cerebral ischemia (FCI) achieved by occlusion of the middle cerebral artery. The experimental groups included sham operation, FCI plus vehicle, and FCI plus Epo. In the Epo-treated group, pups received a single intraperitoneal injection of 1000 U/kg 15 min after FCI or three injections of 100, 1000, or 5000 U/kg, starting at 15 min and repeated at 1 and 2 d after FCI. Epo treatment produced significant reductions in the mean infarct area and volume at 1 and 3 d after FCI, demonstrated by 2,3,5-triphenyltetrazolium chloride staining. Terminal deoxynucleotidyltransferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining showed a markedly reduced number of TUNEL-positive cells in the Epo-treated group when compared with the vehicle control 3 d after FCI (p<0.01). The most effective dose after FCI was 1000 U/kg for 3 d. Immunoanalyses showed that Epo induced a significant increase in phosphorylated Janus kinase 2 and signal transducer and activator of transcription-5 expressions at 1 and 3 d and up-regulated Bcl-xL expression by 24 h after FCI but did not affect Epo receptor or NF-kappaB expression. In conclusion, Epo given after FCI in neonatal rats provides significant neuroprotection, mediated possibly by activation of the Janus kinase-signal transducer and activator of transcription-Bcl-xL signaling pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center