Format

Send to

Choose Destination
Prostate. 2005 Aug 1;64(3):224-39.

Constitutive activation of P I3 K-Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model.

Author information

1
Department of Urology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio.

Abstract

BACKGROUND:

Cancer progression is usually facilitated by independent growth signals that may lead to increased cell survival and evasion of apoptosis. Phosphatidylinositol 3'-OH kinase (P I3 K)-Akt and transcription factor NF-kappaB are important signaling molecules and key survival factors involved in the control of cell proliferation, apoptosis, and oncogenesis. Although P I3 K-Akt and NF-kappaB have been implicated in the development and progression of prostate cancer, expression of these molecules during progression of autochthonous disease has not been elucidated.

METHODS:

Prostate cancer growth and progression in autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and male non-transgenic littermates were observed by magnetic resonance imaging (MRI). Expression patterns of P I3 K-Akt, NF-kappaB, I kappaB, and associated signaling molecules during different stages of cancer progression in these mice were examined by Western blot analysis, electrophoretic mobility shift assay (EMSA), enzyme-linked immunoabsorbent assay (ELISA), kinase assay, and immunohistochemistry.

RESULTS:

Sequential MRI and gross analysis of prostate gland exhibited increasing prostate volume associated with the development and progression of prostatic adenocarcinoma in TRAMP mice, compared to male non-transgenic littermates. Differential protein expression of P I3 K, phosphorylated-Akt (Ser 473), I kappa Balpha and its phosphorylation, IKK kinase activity, NF-kappaB/p65, p50, DNA binding, and transcriptional-regulated genes, viz., Bc l2, cyclin D1, MMP-9, and VEGF were observed during prostate cancer progression in TRAMP mice, compared to male non-transgenic littermates. Expressions of these molecules were significantly increased during cancer progression observed at 24 and 32 weeks of age.

CONCLUSIONS:

Differential expression pattern of P I3 K-Akt, NF-kappaB and I kappaB during prostate cancer progression in TRAMP mice suggest that these molecules represent potential molecular targets for prevention and/or therapeutic intervention.

PMID:
15712212
DOI:
10.1002/pros.20217
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center