Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2005 Mar;7(3):246-54.

Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis.

Author information

1
Department of Molecular and Cell Biology, 16 Barker Hall, University of California, Berkeley, CA 94720-3202, USA.

Abstract

In both yeast and mammals, endocytic internalization is accompanied by a transient burst of actin polymerization. The yeast protein kinases Prk1p and Ark1p, which are related to the mammalian proteins GAK and AAK1, are key regulators of this process. However, the molecular mechanism(s) by which they regulate actin assembly at endocytic sites have not yet been determined. The Eps15-like yeast protein Pan1p is a Prk1p substrate that is essential for endocytic internalization and for proper actin organization. Pan1p is an Arp2/3 activator and here we show that this activity is dependent on F-actin binding. Mutation of all 15 Prk1p-targeted threonines in Pan1p to alanines mimicked the ark1Delta prk1Delta phenotype, demonstrating that Pan1p is a key Prk1p target in vivo. Moreover, phosphorylation by Prk1p inhibited the ability of Pan1p to bind to F-actin and to activate the Arp2/3 complex, thereby identifying the endocytic phosphoregulation mechanism of Prk1p. We conclude that Prk1p phosphorylation of Pan1p shuts off Arp2/3-mediated actin polymerization on endocytic vesicles, allowing them to fuse with endosomes.

Comment in

PMID:
15711538
DOI:
10.1038/ncb1229
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center