Format

Send to

Choose Destination
J Mass Spectrom. 2005 Feb;40(2):193-201.

Quantification of the A beta peptide in Alzheimer's plaques by laser dissection microscopy combined with mass spectrometry.

Author information

1
Pharma Research Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland.

Abstract

The accumulation and aggregation of the beta-amyloid peptide (A beta) in the brain represents a key factor in the pathogenesis of Alzheimer's disease (AD). Many of the transgenic mouse models for AD exhibit an amyloid pathology with neuritic plaques but they typically vary by the type and abundance of plaques identified in their brains and by the onset and severity of cognitive impairment. Thus, an important consideration in the characterization of AD transgenic mouse models should be the quantitative evaluation of the amyloid load in the brain together with a detailed physico-chemical analysis of A beta from the deposited plaques. Here we present an analytical procedure to collect single amyloid plaques from anatomically defined brain regions by laser dissection microscopy that can be quantitatively assessed in their A beta isoforms composition by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Quantification was achieved by stable isotope dilution using calibrated 15N-labeled A beta standards that were spiked in the sample immediately after laser dissection. Using this method, we found that the amyloid loads in brain plaques isolated from the transgenic AD mouse model PS2APP or from human were similar. Total A beta composition was estimated at approximately 50-100 fmol per excised plaque disc, as confirmed by immunoblot analysis. N-Terminal truncated A beta isoforms were identified in both transgene and human amyloid plaques but with significantly elevated levels in human samples.

PMID:
15706631
DOI:
10.1002/jms.739
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center