Broadly distributed nucleophilic reactivity of proteins coordinated with specific ligand binding activity

J Mol Recognit. 2005 Jul-Aug;18(4):295-306. doi: 10.1002/jmr.734.

Abstract

Covalent nucleophile-electrophile interactions have been established to be important for recognition of substrates by several enzymes. Here, we employed an electrophilic amidino phosphonate ester (EP1) to study the nucleophilic reactivity of the following proteins: albumin, soluble epidermal growth factor receptor (sEGFR), soluble CD4 (sCD4), calmodulin, casein, alpha-lactalbumin, ovalbumin, soybean trypsin inhibitor and HIV-1 gp120. Except for soybean trypsin inhibitor and alpha-lactalbumin, these proteins formed adducts with EP1 that were not dissociated by denaturing treatments. Despite their negligible proteolytic activity, gp120, sEGFR and albumin reacted irreversibly with EP1 at rates comparable to the serine protease trypsin. The neutral counterpart of EP1 reacted marginally with the proteins, indicating the requirement for a positive charge close to the electrophilic group. Prior heating resulted in altered rates of formation of the EP1-protein adducts accompanied by discrete changes in the fluorescence emission spectra of the proteins, suggesting that the three-dimensional protein structure governs the nucleophilic reactivity. sCD4 and vasoactive intestinal peptide (VIP) containing phosphonate groups (EP3 and EP4, respectively) reacted with their cognate high-affinity binding proteins gp120 and calmodulin, respectively, at rates exceeding the corresponding reactions with EP1. Reduced formation of EP3-gp120 adducts and EP4-calmodulin adducts in the presence of sCD4 and VIP devoid of the phosphonate groups was evident, suggesting that the nucleophilic reactivity is expressed in coordination with non-covalent recognition of peptide determinants. These observations suggest the potential of EPs for specific and covalent targeting of proteins, and raise the possibility of nucleophile-electrophile pairing as a novel mechanism stabilizing protein-protein complexes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • Biotin / analogs & derivatives*
  • Biotin / chemistry
  • Catalysis
  • Humans
  • Ligands
  • Organophosphonates / chemistry*
  • Proteins / chemistry*
  • Trypsin Inhibitors / chemistry

Substances

  • Ligands
  • Organophosphonates
  • Proteins
  • Trypsin Inhibitors
  • diphenyl 4-amidino-alpha-(biotinyl-6-aminohexanamido)benzylphosphonate
  • Biotin